Discrete
Discrete(
n: int,
init_value: int | None = None,
constrain_fn: Callable[[int], bool] | None = None,
**kwargs: Any,
)
Bases: Discrete
Extended discrete space with state tracking and constraint support.
Parameters:
-
n(int) –Number of elements in the space.
-
init_value(int | None, default:None) –Initial value for the space.
-
constrain_fn(Callable[[int], bool] | None, default:None) –Optional predicate function for rejection sampling.
-
**kwargs(Any, default:{}) –Additional arguments passed to gymnasium.spaces.Discrete.
sample
sample(
mask: Any | None = None,
max_tries: int = 1000,
warn_after_s: float | None = 5.0,
set_value: bool = True,
**kwargs: Any,
) -> int
Sample a random value using rejection sampling for constraints.
Parameters:
-
mask(Any | None, default:None) –Optional mask for sampling.
-
max_tries(int, default:1000) –Maximum number of rejection sampling attempts.
-
warn_after_s(float | None, default:5.0) –Log a warning if sampling takes longer than this.
-
set_value(bool, default:True) –Whether to update the current value with the sample.
-
**kwargs(Any, default:{}) –Additional arguments passed to gymnasium sample.
Returns:
-
int–A randomly sampled value satisfying constraints.
Raises:
-
RuntimeError–If no valid sample is found within max_tries.
contains
reset
reset() -> None
Reset the space value to its initial value.
MultiDiscrete
MultiDiscrete(
nvec: Any,
init_value: Any | None = None,
constrain_fn: Callable[[Any], bool] | None = None,
**kwargs: Any,
)
Bases: MultiDiscrete
Extended multi-discrete space with state tracking and constraint support.
Parameters:
-
nvec(Any) –Vector of number of elements for each dimension.
-
init_value(Any | None, default:None) –Initial values for the space.
-
constrain_fn(Callable[[Any], bool] | None, default:None) –Optional predicate function for rejection sampling.
-
**kwargs(Any, default:{}) –Additional arguments passed to gymnasium.spaces.MultiDiscrete.
sample
sample(
mask: Any | None = None,
max_tries: int = 1000,
warn_after_s: float | None = 5.0,
set_value: bool = True,
**kwargs: Any,
) -> Any
Sample random values using rejection sampling for constraints.
Parameters:
-
mask(Any | None, default:None) –Optional mask for sampling.
-
max_tries(int, default:1000) –Maximum number of rejection sampling attempts.
-
warn_after_s(float | None, default:5.0) –Log a warning if sampling takes longer than this.
-
set_value(bool, default:True) –Whether to update the current value with the sample.
-
**kwargs(Any, default:{}) –Additional arguments passed to gymnasium sample.
Returns:
-
Any–Randomly sampled values satisfying constraints.
Raises:
-
RuntimeError–If no valid sample is found within max_tries.
contains
reset
reset() -> None
Reset the space values to their initial values.
Box
Box(
low: Any,
high: Any,
shape: Iterable[int] | None = None,
init_value: Any | None = None,
constrain_fn: Callable[[Any], bool] | None = None,
**kwargs: Any,
)
Bases: Box
Extended continuous box space with state tracking and constraint support.
Parameters:
-
low(Any) –Lower bounds of the space.
-
high(Any) –Upper bounds of the space.
-
shape(Iterable[int] | None, default:None) –Optional shape of the space.
-
init_value(Any | None, default:None) –Initial values for the space.
-
constrain_fn(Callable[[Any], bool] | None, default:None) –Optional predicate function for rejection sampling.
-
**kwargs(Any, default:{}) –Additional arguments passed to gymnasium.spaces.Box.
sample
sample(
mask: Any | None = None,
max_tries: int = 1000,
warn_after_s: float | None = 5.0,
set_value: bool = True,
**kwargs: Any,
) -> Any
Sample a random value using rejection sampling for constraints.
Parameters:
-
mask(Any | None, default:None) –Optional mask for sampling.
-
max_tries(int, default:1000) –Maximum number of rejection sampling attempts.
-
warn_after_s(float | None, default:5.0) –Log a warning if sampling takes longer than this.
-
set_value(bool, default:True) –Whether to update the current value with the sample.
-
**kwargs(Any, default:{}) –Additional arguments passed to gymnasium sample.
Returns:
-
Any–A randomly sampled value satisfying constraints.
Raises:
-
RuntimeError–If no valid sample is found within max_tries.
contains
reset
reset() -> None
Reset the space value to its initial value.
RGBBox
Bases: Box
Specialized box space for RGB image data.
Parameters:
-
shape(Iterable[int], default:(3,)) –Shape of the image (must have a channel of size 3).
-
init_value(Any | None, default:None) –Initial value for the space.
-
**kwargs(Any, default:{}) –Additional arguments passed to Box.
Raises:
-
ValueError–If shape does not have a channel of size 3.
Dict
Dict(
spaces_dict: dict[Any, Space] | None = None,
init_value: dict | None = None,
constrain_fn: Callable[[dict], bool] | None = None,
sampling_order: list[str] | None = None,
**kwargs: Any,
)
Bases: Dict
Extended dictionary space with ordered sampling and nested support.
Parameters:
-
spaces_dict(dict[Any, Space] | None, default:None) –Dictionary mapping keys to Gymnasium spaces.
-
init_value(dict | None, default:None) –Initial values for the contained spaces.
-
constrain_fn(Callable[[dict], bool] | None, default:None) –Optional predicate function for rejection sampling.
-
sampling_order(list[str] | None, default:None) –Explicit order for sampling keys.
-
**kwargs(Any, default:{}) –Additional arguments passed to gymnasium.spaces.Dict.
sample
sample(
mask: Any | None = None,
max_tries: int = 1000,
warn_after_s: float | None = 5.0,
set_value: bool = True,
**kwargs: Any,
) -> dict
Sample a random element from the Dict space.
Parameters:
-
mask(Any | None, default:None) –Optional mask for sampling.
-
max_tries(int, default:1000) –Maximum number of rejection sampling attempts.
-
warn_after_s(float | None, default:5.0) –Log a warning if sampling takes longer than this.
-
set_value(bool, default:True) –Whether to update the current value with the sample.
-
**kwargs(Any, default:{}) –Additional arguments passed to sample.
Returns:
-
dict–A randomly sampled dictionary satisfying constraints.
Raises:
-
RuntimeError–If no valid sample is found within max_tries.
contains
reset
reset() -> None
Reset all contained spaces to their initial values.
update
Update specific keys in the Dict space by resampling them.
Parameters:
Raises:
-
ValueError–If a key is not found in the Dict space.