Fashion-MNIST
Overview
The Fashion-MNIST dataset is a widely-used image classification benchmark for single-label classification consisting of 70,000 28×28 grayscale images across 10 balanced classes (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot), with 7,000 images per class.
Train: 60,000 images (6,000 per class)
Test: 10,000 images (1,000 per class)
Data Structure
When accessing an example using ds[i], you will receive a dictionary with the following keys:
Key |
Type |
Description |
|---|---|---|
|
|
28×28 grayscale image |
|
int |
Class label (0-9) |
Usage Example
Basic Usage
from stable_datasets.images.fashion_mnist import FashionMNIST
# First run will download + prepare cache, then return the split as a HF Dataset
ds = FashionMNIST(split="train")
# If you omit the split (split=None), you get a DatasetDict with all available splits
ds_all = FashionMNIST(split=None)
sample = ds[0]
print(sample.keys()) # {"image", "label"}
# Optional: make it PyTorch-friendly
ds_torch = ds.with_format("torch")
References
Official website: https://github.com/zalandoresearch/fashion-mnist
License: MIT License
Citation
@article{xiao2017fashion,
title={Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
author={Xiao, Han and Rasul, Kashif and Vollgraf, Roland},
journal={arXiv preprint arXiv:1708.07747},
year={2017}
}